Insights



The Market and Innovation Gap

Posted by Chris Wenders on Aug 27, 2019 7:48:36 PM

George W. Bush, in his State of the Union speech in 2004, stated, "By computerizing health records, we can avoid dangerous medical mistakes, reduce costs, and improve care."As a result, healthcare technology investment in the 2000s focused on the digitization of the medical record and its associated processes. President Obama solidified this mandate with the Patient Protection and Affordable Care Act (PPACA) requiring the electronic medical record to take effect by 2014.

From Bed Management to Discharge Planning this period ushered in substantial investments in data collection and data digitization technologies. These investments are depicted on the left side of the infographic below.  Costs, however, were not reduced.

Read More

Topics: Situational Awareness, The Cognitive Enterprise, Outcomes as a Service #OaaS, Air Traffic Control, Edgility Design

Closing the Prediction Value Gap with Actions

Posted by Paul Evavold on Jun 11, 2019 10:04:25 AM

Operationalizing Prediction Situation

As healthcare organizations continue to implement new and advanced predictive analytics throughout their systems, identifying potential at-risk patients - sepsis patients, or patients with high potential for readmission, for example - becomes standard procedure; operationalizing the data these analytic tools discover now becomes the focus.

Prediction is a substantial advancement in healthcare operations. However, predicting patient status by itself is not impactful, nor worthwhile, without an associated operational protocol that intervenes based on that prediction. Knowing you may have ten patients at risk for sepsis is a huge leap forward, now how do I ensure these patients remain safe and healthy? Someone must do something, in the appropriate order, in a prescribed time-frame. Is this being done?

Read More

Topics: Situational Awareness, The Cognitive Enterprise, Design Thinking, Edgility Design

A Case For Seamless Data Flow

Posted by Balaji Ramadoss on May 9, 2019 10:50:58 AM

Check out the latest article from Forbes Tech Council featuring our founder Balaji Ramadoss. 

In a recent Harvard Business Review article entitled "Why Data Science Teams Need Generalists, Not Specialists," Eric Colson defines the limitations of traditional “division of labor” structure as it pertains to data science and compares it with a “learn as you go” structure facilitated by the generalist. The division-of-labor model works well, he notes, when the requirements “fully describe all aspects of the product and its behavior.” But when “knowledge” is the requirement, the specialization construct found in the division-of-labor models only hinders. As a result, Mr. Colson describes the need to balance learning vs. efficiency gains by hiring full-stack data scientists -- generalists who are responsible for everything from conception to implementation.

Today, information technology and data platforms perpetuate the barriers for operationalizing with architectures that mimic the silos based on the function-based division of labor. Contemporary data platforms are designed around these function-based divisions that have not evolved much since the 1990s. As an example, storage and normalization specialists are still the bottlenecks for the as-a-service platforms of today, mimicking the traditional silos in specialization.

Bloated investments in data architectures such as multiple warehouses, on-premise data marts, cloud-based data lakes and disparate business intelligence tools tend to result in data remaining mired in their operational silos. This trend is observed across all industries and, in many cases, business lines within industry verticals tend to have different solutions perpetuating the need for specialists to care and feed data and technology platforms.

Organizations that aspire to divest from the silos of specialization and focus on reducing the incumbent friction and inertia should look past technology and focus on outcomes and ownership. Practically, this can be achieved by organizing teams and specialties by business units and outcomes to avoid traditional technology silos. Through this strategy, teams are not only permitted but encouraged to cross the all-too-often uncrossable silos to ideate multiple solutions before converging on the best one.

Technology executives also need a new operating model and culture that puts the focus primarily on outcomes and empowers the generalist to own the outcome. It is critical not to see this as a technology investment but rather a rewiring of existing investments to maximize returns by creating process efficiencies that emanate from reducing handoffs and specialization silos.

It's important to focus on the philosophical change in your organization’s approach to problem-solving. Analyzing workflows and then reducing or eliminating the low-value functions performed by high-value resources is the first step. These changes, by design, will lead to new ways of tapping into and expanding the value of both the siloed data and your incumbent technology investments.

When appropriately architected, data and technology that is rewired around organizational outcomes can mechanize the operating model and enable iteration, learning and cognitive capabilities. These capabilities will allow you to implement a cognitive learning platform and will allow generalists to move fluidly between silos of specialization, data pipelines and measurements. This structure is amenable to generalists who seek insight into the business not readily apparent to the specialist.

The key to a learning organization is iteration, and a cognitive platform is architected to reduce the "tax on iteration." To facilitate learning, we recommend the cognitive platforms of tomorrow focus on closing the knowledge gaps and practice loops between silos. Removing friction and inertia requires a radical rethinking of current data, technology and development methodologies that have created specialization silos. We believe cognitive platforms should allow data to coalesce around specific outcomes so that generalists can build models, applications and solutions.

Organizations that have spent the last decade warehousing data will be required to utilize and exploit their data using this new and distinctive cross-functional, collaborative model. We recommend strategically disabling the traditional silos in specialization, both from a technology and from a talent perspective. This new operating model, philosophy and technology architecture will do more than automate and optimize workflows; they will become responsive and intelligent. Moreover, instead of wasting cycles in operational handoffs between specialists, the generalist can focus on removing ineffective and inefficient processes imposed on workers by eliminating the low-value workflows from high-value assets.

As an operating principle, when a cognitive platform is paired with generalists who have the full-stack ownership, the output is a high-performing organization.

Read More

Topics: Situational Awareness, The Cognitive Enterprise, Air Traffic Control, Forbes

Peer to Peer: The Framework for Thinking and Learning Systems

Posted by Chris Halsema on Apr 16, 2019 2:05:40 PM

Everything in the universe, from galaxies and solar systems to rain-forests and colonies of simple-cell organisms, behaves as a peer to peer network. Cultures, societies, and families form, survive and endure on the peer to peer framework. Not uncoincidentally, the human brain operates on the peer to peer model. A neural network model to be precise - neurons, the basic unit of the brain, connecting to form a vast mesh network. The brain is peer to peer at its finest. Nature does not operate on a centralized or hierarchical system of organization, data collection, dissemination, and communication.

Read More

Topics: Situational Awareness, The Cognitive Enterprise, Edgility Design

Edgility - A Cognitive Healthcare Company

Posted by Heather Ramadoss on Mar 21, 2019 11:32:25 AM
Read More

Topics: Situational Awareness, The Cognitive Enterprise, Outcomes as a Service #OaaS, Air Traffic Control

Discharge As A Service

Posted by Paul Evavold on Mar 21, 2019 10:49:35 AM

Experience the Joy of Practicing Medicine® with Discharge as a Service

Situation

There is perhaps no easier way to slow the throughput of your hospital than by stumbling through an ineffective discharge process. Inefficient and drawn-out discharges arise naturally out of competing staff priorities and process variations. These effectively reduce the physician’s and nurses’ ability to readily coordinate discharges. Each disjointed operational and logistical variation becomes the responsibility of yet another care giver to manage - distracting everyone from the joy of practicing medicine.

Read More

Topics: Discharge as a Service, The Joy of Practicing Medicine, Situational Awareness, The Cognitive Enterprise, Outcomes as a Service #OaaS, Air Traffic Control

Edgility - Enabling A Cognitive Enterprise

Edgility brings situational-awareness to organizations in order to improve outcomes and eliminate low value workflows from high value assets through a technology platform that incorporates artificial intelligence (AI) and robotic process automation (RPA).

 

Subscribe Here!

Recent Posts